Our Quest for a Reference Experiment

Michael C. H. McKubre

former Director, Energy Research Center Principal Scientist in the Materials Research Laboratory SRI International, Menlo Park, California

Presented at the ARPA-E Workshop on LENR
Washington DC, USA
October 21 & 22, 2021.

Can condensed matter nuclear reactions be demonstrated in fully replicable form, on demand? How do we best accomplish this?

What is our present situation? (a purely personal perspective)

- 1. Multiple anomalies have been revealed in condensed matter systems...
- These anomalies require nuclear explanation(s): Condensed Matter Nuclear Reactions or Science; CMNR or CMNS*.
- Based on long experience in the field (31+ years),
 I have accumulated a lot of evidence that
 Nuclear Reactions do occur in Condensed Matter.
- 4. Four examples from our work follow...

^{*} Beijing IAC, ICCF-9, May 2002.

^{**} Began work on the Pd/D system at SRI in 1978 (EPRI).

Examples of successful demonstration.

- 1. Heat (FPHE). Excess heat from Pd/D₂O at levels consistent with nuclear effects but greatly exceeding "chemical" (eV) levels.
 - a) E_{XS} up to 20 keV / Pd or D atom (*Energetics ETI-64*).
 - b) Thousands of literature examples with lower specific energy levels.
 - c) >100 experiments at SRI alone in 4 or 5 different calorimetric modes.
- 2. <u>Heat and ⁴He</u>. The production of ⁴He in chemical energy environments at levels consistent with the measured excess heat.
 - a) Miles, Gozzi, Arata, Case, +++.
 - b) Four different experiment types at SRI alone.
- 3. <u>Tritium and ³He via ³H decay from electrolytic experiments.</u>
 - a) BARC, Storms, Bockris, Will, many others including SRI.
 - b) Gas phase experiments [Claytor and others].
 - c) Sporadic and sub-quantitative with heat.
- 4. Other nuclear.
 - a) Post-test Autoradiography (example at end).
 - b) CR-39 results (multiple replications including recent and reported here).
 - c) Additional range of nuclear products and effects that are inconsistent with isolated two-body nuclear reaction.

1. Excess Heat [the FPHE]

- a. Occasional high reproducibility (up to 73% at SRI) but not complete.
- b. Graph reveals controlling parameters: Isotope effect, D/Pd, I or I, t, [flux].
- c. A multi-parameter empirical expression allows us to explain our failures.

SRI Closed-Cell Mass-Flow Calorimetry Experiments: P13 [H₂O] and P14 [D₂O] Operated simultaneously, in electrical series, Monitored using the same Instrumentation. McKubre *et al.*,

Operated simultaneously, in electrical series, Monitored using the same instrumentation. McKubre *et al.*, Isothermal Flow Calorimetric Investigation of the D/Pd System, ICCF-2, 1991.

2. Heat and ⁴He. SRI replication of Les Case. H₂ and D₂ Gas with Pd/C Catalyst. Correlated Heat and ⁴He. On-Line Mass Spec.

Correlated Heat and 4He. On-Line Mass Spec. Differential and Gradient Heat Flow Calorimetry.

~0.5% Pd (or other PGM?) on coconut shell carbon catalyst. ~2 Atm. H_2 or D_2 , ~200° C. McKubre *et al.*, The Emergence of a Coherent Explanation for Anomalies Observed in D/Pd and H/Pd Systems; Evidence for ⁴He and ³He Production, ICCF-8, 2000.

Case Cell: Correlated Heat and 4 He. Q = 31 \pm 13 MeV/atom Discrepancy due to solid phase retention of 4 He.

McKubre *et al.*, The Emergence of a Coherent Explanation for Anomalies Observed in D/Pd and H/Pd Systems; Evidence for ⁴He and ³He Production, ICCF-8, 2000.

SRI replication of Arata and Zhang "DS" Cathodes.

- Two Cathodes prepared in Osaka to Arata and Zhang's specifications. a)
- Two cells operated at SRI simultaneously in LiOD and LiOH. b)
- $P_{XS LIOH} = 0 \pm 1.3W$. $P_{XS LIOH, Max} = 12 \pm 1.5\%$ of P_{In} . c)
- Post-test analyses revealed ³H and ³He in metal phases for LiOD cell (not for LiOH). d)

External Area ~30 cm²

McKubre et al., The Emergence of a Coherent Explanation for Anomalies Observed in D/Pd and H/Pd Systems; Evidence for ⁴He and ³He Production, ICCF-8, 2000.

3. Evidence for Tritium production.

- a) Tritium is produced in many CMNS experiments.
- b) Tritium came to us "pre-reproduced" [Storms, Bockris, BARC].
- c) 3 He and particularly ∂ [3 He] / [∂ t] provides strong evidence for 3 H generation.
- d) ³He is the decay product of ³H which diffused from a source inside the electrode.
- e) This source initiated some time during the period of electrolysis in D₂O.

4. Other Nuclear Evidence.

- a. Autoradiography
- b. CR-39
- c. X-rays, Gamma emission, charge emission
- d. Asynchronous neutron bursts

Autoradiograph of P2 cathode JM Pd, 4 mm dia., from pressurized cell mass flow calorimeter, after 12-day exposure.

McKubre *et al.* Calorimetry and Electrochemistry in the D/Pd System. in The First Annual Conference on Cold Fusion, ICCF-1,1990.

	Cathode		Electrolyte				Maximum		Duration		Maximum Power		Excess	Total Energy						
Expt.	Length	dia.	A	Type	Conc. Ad	ditive	Bath T	P	I	Loading:	:	Expt.	Init.	Input	Excess		Obs.	Input	Excess	
#	(cm)	(cm)	(cm ²)		(M)		(°C)	(psi)	(A cm ⁻²)	R/R°	D/Pd	(h)	(h)	(W)	(W)	%	#	(MJ)	(MJ)	%
4 mm dia. Johnson Matthey in Flow Calorimeter																				
P2 2	4.5	0.4	5.7	LiOD	1.0 n	one	4	1000	495	1.617	0.926	1393	504	3.8	2.00	53%	4	50	1.070	2.1%

Why is the evidence of CMNR not generally accepted? How do we reverse this?

1. The replication challenge...

- a) Demonstrate the effect on demand.
- b) Transport and transplant a successful experiment from one laboratory to another (in the extreme, based on written instructions alone).
- c) Replicate / reproduce <u>reliably</u> the magnitude and timing of the effect.
- d) This level of replicability has *not* been demonstrated.

2. Experiment Replication Criteria:

- a) Keep it simple.
- b) Correlated results >> Single Variable Output.
- c) Reproduce the magnitude and timing in Detail.
- d) Experiments performed separately and published simultaneously by multiple groups.

A grand challenge!

- 1. Identify what we consider to the best 3 or 4 experiments.
- 2. Recruit multiple laboratories to work on them.
- 3. Write clear scientific papers, including multiple authors from the multiple labs. Do our own peer review first.
- 4. Publish these papers in JCMNS or other peer reviewed scientific journals.
- 5. Present the work at ICCF-21 in a special session focused on these replications.

Ordered list of preferred prospective experiments

	Experiment	Advantages	Disadvantages	Year					
1	Case- <i>Like</i>	"Cheap and Easy"	Catalyst concerns:	1998					
	Heat, ⁴ He	Few moving parts	Source						
	Supported small-	No Electrochemistry	Cleanliness						
	dimension metal	Mild elevated conditions, P & T	Limited documentation						
	T gradient => Flux		+						
2	Arata & Zhang	Large effect:	Technically Challenging	1997					
	Heat	$\sim 10\% P_{XS}, 10 W, >100 MJ$	Very long duration						
	⁴ He, ³ He, ³ H	Modest Loading Requirement	Potentially hazardous						
		Integral Nuclear Product (³ H)	Pd black details?						
			Only 1 replication to date						
			+						
3	Patterson (CETI)	Quick (several / week)	Source and nature of beads?	1995					
	" mair	Calorimetry "built in" and easy	Heat Flow calorimetry						
		Modest Loading Requirement	Significant loading variability						
			Few independent replications						
	76.70		(not successful at SRI)						
			Hidden Details?						
	Till sin		+ Inventor deceased						
4	SRI "Exploding"	Very quick (several / day)	"Good" Electrochemistry req.	2011					
	Wire, Phase-Change	Large percentage effect	Small absolute effect						
	Calorimetry	High accuracy Calorimetry	No independent replication						
	⁴ He, ³ He, ³ H	High precision Calorimetry	Nuclear products not yet						
	CR-39?	"Ideal" Screening Tool	searched for						
		Originators still available and operational							

Acknowledgements

Major Institutional Funding Support:

EPRI, MITI, DARPA, DTRA, BEC

Major Collaborators:

Stanford, MIT, ENEA, Energetics, NRL, BEC

The author is also very much indebted to a group of scientists and engineers which had as it's core:

Yoshiaki Arata, Les Case, Jason Chao, Bindi Chexal, Brian Clarke, Steve Crouch-Baker, Jon McCarty, Irving Dardik, Arik El Boher, Russ George, Ehud Greenspan, Peter Hagelstein, Alan Hauser, Graham Hubler, Nada Jevtic, Shaul Lesin, Robert Nowak, Tom Passell, Andrew Riley, Romeu Rocha-Filho Joe Santucci, Stuart Smedley, Fran Tanzella, Paolo Tripodi, Robert Weaver, Vittorio Violante, Kevin Wolf, Lowell Wood, Sharon Wing and Tanya Zilov.